

LinqProtocol Litepaper - Decentralized
Compute Powered by SaaS Demand​

​
Authored by LinqAI

Feb 24, 2025

​
Version 0.0.1

Abstract

LinqProtocol is a decentralized computing marketplace deployed on a

blockchain Layer-2 network, designed to unlock underutilized

computing resources. It takes a SaaS-demand-first approach by

seeding the network with real workloads (such as synthetic data

generation services) to overcome the traditional supply–demand

bootstrapping challenge. Idle hardware from data centers and edge

providers can be repurposed through LinqProtocol’s platform,

creating a cost-effective and scalable alternative to centralized cloud

computing. Smart contracts handle bidding, escrow of payments, and

job orchestration in a trust-minimized way, while off-chain nodes

perform computations in secure containerized environments.

This litepaper discusses the inefficiencies in current centralized

computing, the market opportunity for decentralized solutions,

technical architecture of LinqProtocol, and our unique approach to the

problems plaguing existing decentralized compute solutions.

0

Table of Contents

Abstract... 0
Table of Contents.. 1
1. Problems Decentralized Compute Solves..................................... 2
1.1 Landscape of Opportunity...4
1.2 Challenges with Existing Decentralized Compute Platforms...6
2. Technical Architecture of LinqProtocol....................................... 8
2.1 Smart Contract Layer..10
2.2 Off-Chain Decentralized Compute Nodes................................12
2.3 User Interfaces.. 17
3. Opportunity in Synthetic Data Generation................................19
4. LNQ Token Economy...23
5. Roadmap... 25
References..29

1

1. Problems Decentralized Compute Solves

Figure 1: Underutilized servers in a traditional data center. Studies

show average server utilization can be as low as 12–18%​, leading to

wasted energy and capital.

Contemporary cloud computing infrastructure suffers from significant

inefficiencies and centralization risks. In many enterprise data centers,

servers run at a low utilization rate – often only around 12–18% on

average​. [1] A substantial fraction of machines are powered on but

doing little or no work; an estimated one-third of servers in data

centers are “zombie” servers drawing power without contributing

useful computation, accounting for nearly 40% of energy usage being

effectively wasted​ [2]. This underutilization represents not only an

environmental and economic cost (idle hardware consumes electricity

and depreciates without delivering value) but also a lost opportunity

to harness existing compute power for productive tasks.

In addition to inefficiency, centralized cloud architectures introduce

points of fragility and high operational overhead. Central cloud data

centers concentrate resources in a few locations and under a few

providers, making them susceptible to single points of failure. For

example, a widespread outage in December 2020 took multiple

Google cloud services offline simultaneously [3]​, illustrating how

2

failures in a centralized system can cascade and disrupt many

dependent services. Performance can also be suboptimal for

distributed users, as data and workloads must be funneled to and from

distant servers, incurring latency and bandwidth costs [3]. Moreover,

maintaining large-scale data centers is expensive – providers must

invest in specialized facilities, cooling, and skilled staff [3], costs that

ultimately get passed on to users. These high barriers and vendor

lock-in can stifle smaller enterprises or researchers who need compute

power but cannot afford large cloud contracts or infrastructure of their

own.

Decentralized computing directly targets these issues by distributing

workloads across a network of independent nodes, thus leveraging

idle capacity and removing single-company monopolies. By tapping

into existing hardware (from personal computers and servers at the

network edge to cloud instances offered by independent providers), a

decentralized marketplace can increase overall resource utilization.

Idle machines that would otherwise remain powered on doing nothing

can perform useful work, effectively recycling computational power.

This model also inherently mitigates single-point failures – there is no

central server whose outage would halt the system, since tasks can be

routed to many alternative nodes. Furthermore, a peer-to-peer

marketplace introduces competitive pricing for compute resources,

which can drive down costs for consumers compared to the

marked-up prices of central cloud providers. Prior research in

distributed and volunteer computing has demonstrated dramatically

lower costs: harnessing 10,000 volunteer PCs (~100 TeraFLOPS) was

estimated to cost an order of magnitude less per year than the

equivalent cloud instances [4]​. Decentralized compute networks aim to

solve inefficiencies of low hardware utilization, reduce single-point

failures, and provide a more cost-effective, scalable supply of

computing power by aggregating the world’s underused resources.

3

1.1 Landscape of Opportunity

The demand for computational power is rising exponentially across

industries, outpacing the capacity of traditional centralized

infrastructure in many respects. Global data center investment and

expansion reflect this surge: leading operators are projected to deploy

about $1.8 trillion from 2024 to 2030 to meet the growing thirst for

compute [5]. High-performance computing (HPC) and advanced AI

workloads are a major driver – the global HPC market, for instance,

was valued around $50 billion in 2023 and is expected to roughly

double to $110 billion by 2032​ [6]. Particularly with the rise of

machine learning and generative AI, demand has skyrocketed. The

computational requirements for state-of-the-art AI models have been

increasing at an extraordinary rate, with the amount of compute used

by breakthrough training runs doubling roughly every few months in

the 2010s​ [7]. This trajectory is widely viewed as unsustainable under

current paradigms, due to constraints in hardware availability and cost​

[7]. In effect, there is a growing gap between the computing power

industries want and what the conventional cloud oligopoly can

economically provide. Bridging this gap is a significant opportunity.

At the same time, there is a vast latent supply of computing

resources distributed globally. Billions of devices – from data center

servers to personal computers and IoT nodes – possess CPUs and

GPUs that are often idle or underused outside of peak periods​ [8].

Government and industry reports have highlighted that average

utilization in enterprise servers remains very low​ [1], and many

devices sit idle awaiting tasks that never fully occupy their capacity.

This idle capacity, if networked and made accessible, represents a

secondary market of compute power that could potentially rival or

exceed the capacity of dedicated data centers. Notably, volunteer

distributed computing projects in academia (e.g. SETI@home,

Folding@home) successfully harnessed hundreds of thousands of

4

ordinary computers to achieve aggregate performance on the order of

petaflops, comparable to top supercomputers​ [8]. This demonstrates

the feasibility of aggregating disparate resources for large-scale

computation. Until recently, however, such efforts were ad-hoc and

relied on altruism or specific research interest, rather than forming a

general marketplace.

Industry analyzes and whitepapers are increasingly acknowledging

the promise of decentralized cloud solutions to capitalize on this

opportunity​ [3]. By connecting providers of spare computing power

with those who need computing, decentralized compute marketplaces

aim to democratize access to processing resources. This could lead to

a more efficient market: enterprises and researchers gain access to

affordable, scalable compute without large upfront investments, while

owners of underutilized hardware can monetize their equipment. For

example, an IDC report noted that platforms connecting underused

GPUs/CPUs with buyers offer an attractive alternative to investing in

new expensive hardware​ [9]. Decentralized approaches can also

improve resilience and geo-diversity — distributing compute tasks

across many locations can reduce dependence on any single data

center and bring computation closer to where data is generated

(important for latency-sensitive applications). In sectors like scientific

research, healthcare, and artificial intelligence, where massive

computing capacity is needed intermittently, such a marketplace could

provide burst compute capabilities on demand without long-term

infrastructure commitments.

Moreover, new developments in blockchain and distributed systems

provide the trust framework needed for an open compute marketplace.

Blockchain smart contracts can handle payments and enforce fair

exchange (so that providers are paid if and only if the computation is

completed correctly), while cryptographic verification methods (e.g.

verifiable computing, proofs of computation) are emerging to validate

results from untrusted nodes. These innovations address the historical

5

trust barrier that prevented broader use of volunteer computing in

commercial settings. The landscape is primed for decentralized

compute solutions: the demand side is eager for more cost-effective

and scalable compute, and the supply side has abundant idle

resources — connecting the two through a secure marketplace is a

timely opportunity. If even a fraction of the world’s dormant

computing power can be mobilized, it could dramatically expand

effective computing capacity and alleviate pressure on traditional

cloud infrastructure.

1.2 Challenges with Existing Decentralized Compute

Platforms

While the case for decentralized computing is compelling, prior

attempts to build such marketplaces have faced a classic

“chicken-and-egg” problem in balancing demand and supply. For a

compute marketplace to be healthy, it needs a critical mass of

providers (resource suppliers) and requesters (customers with jobs)

active on the network. In practice, achieving this equilibrium has

proven difficult. If there are many providers offering capacity but few

actual tasks to run, providers earn little and may drop out (or never

join) due to insufficient incentives. Conversely, if there are many

would-be users but scarce reliable providers, the users will not get

their jobs done in a timely manner and will abandon the platform.

This coordination problem has hampered several early decentralized

compute networks – supply often outpaced real demand in nascent

stages​ [10], leading to lots of idle provider nodes and disappointed

expectations. One industry analysis noted that a leading decentralized

compute network showed impressive on-chain resource offerings but

very modest actual workload execution, indicating that the sector “has

yet to fully capitalize on its potential market”​ [10]. Part of the

challenge is bootstrapping a self-sustaining ecosystem. Traditional

cloud providers like AWS did not face this two-sided market problem

6

in the same way – they built data centers (supply) in response to

growing internal and customer needs (demand), essentially growing

supply and demand in tandem. In an open marketplace model,

however, the platform must attract two communities simultaneously.

Early decentralized compute projects have typically started by

attracting resource providers with the promise of future earnings, but

without immediate workload demand, those earnings don’t

materialize, causing attrition. On the other hand, attracting users to

run jobs requires convincing them that sufficient capacity and

reliability exist on the network – which is hard to demonstrate without

an existing provider base and successful track record. This is a classic

network effect problem: the value of the network to any participant is

low until many participants are active, but reaching that critical mass

is itself the main hurdle.

Another issue observed in existing platforms is maintaining

marketplace quality and trust. In a decentralized setting, not all

provider nodes are equal – they may differ in performance, reliability,

and honesty. Ensuring that tasks are completed correctly and on time

requires robust protocols (such as benchmarks, reputation systems, or

verification mechanisms). Some early networks struggled with

inconsistent performance or complicated processes for users to

package and verify computations, which limited user adoption beyond

blockchain enthusiasts. Additionally, volatility in token-based pricing

or complex onboarding (wallets, staking, etc.) posed barriers for

mainstream users. These factors, combined with the supply–demand

imbalance, meant that several first-generation decentralized

computing projects did not achieve widespread usage despite the

technology being available.

LinqProtocol’s Approach: LinqProtocol is designed with these

challenges in mind, particularly the bootstrapping problem. By taking

a SaaS-demand-first approach (discussed further below),

LinqProtocol plans to seed the marketplace with real computational

7

workloads from day one, effectively jump-starting demand so that

providers have immediate incentives. This approach can help

establish the positive feedback loop needed: initial jobs attract

providers, a robust provider pool attracts more users with tasks, and

so on until the network grows organically. Additionally, LinqProtocol

emphasizes ease of use and reliability – abstracting away blockchain

intricacies for end users and ensuring that providers meet certain

performance standards – to foster trust in the marketplace. In the next

sections, we delve into the technical architecture enabling this and the

specific initial use-case (synthetic data generation) that LinqProtocol

will leverage to galvanize the network.

2. Technical Architecture of LinqProtocol

Figure 2: Conceptual representation of LinqProtocol’s decentralized

compute network. Many independent nodes are connected via a

blockchain-based coordination layer, enabling peer-to-peer sharing

of computational tasks.

8

​

The LinqProtocol architecture is composed of three primary layers:

(1) an on-chain Smart Contract Layer that coordinates the

marketplace logic (bidding, escrow, and registry), (2) an Off-Chain

Compute Layer consisting of decentralized nodes running

LinqProtocol client software to execute tasks, and (3) various User

Interface and Access tools (dashboards, SDKs, CLI) that allow users

to interact with the network. This section describes each component at

a high level.

Figure 3: High-level conceptual overview of LinqProtocol’s technical

architecture.

9

2.1 Smart Contract Layer

The smart contract layer is the backbone that facilitates trust and

automation in the LinqProtocol marketplace, running on a secure

Layer-2 blockchain for speed and low transaction costs. It includes

several key smart contracts and functions:

●​ Bid/Escrow Contract: This contract manages the economic

exchange for computation. When a user (requester) submits a

job request, a payment in the form of LinqProtocol’s token

(LNQ) is deposited into an escrow within the contract.

Providers can then bid or commit to execute the job for the

posted reward. The escrow ensures that funds are locked

on-chain when the task is accepted and are only released to the

provider upon completion of the work after a number of days

assuming neither party has submitted a dispute, thereby

protecting both parties. If the job fails or times out, the

contract can refund the escrow to the requester or penalize

non-performing providers according to the protocol’s rules.

●​ Provider Registration Contract: To participate, compute

providers must register their nodes through a smart contract

that maintains a directory of available resources. This

registration process includes staking a certain amount of LNQ

token (as collateral to discourage malicious behavior), and

publishing metadata about the node’s capabilities (CPU cores,

GPU, memory, geographic location, etc.). The contract issues

a provider ID and records the provider’s stake and resource

attributes on-chain. It also keeps track of provider reputation

or performance statistics (e.g., number of completed jobs,

success rate) which can be used in scheduling decisions. This

on-chain registry enables requesters to discover suitable

providers and provides a degree of trust (since poorly

10

performing providers can be identified or slashed via their

stake).

●​ Job Management Contracts: LinqProtocol uses smart

contracts to orchestrate the lifecycle of computation jobs. A

Job Request contract (or module) allows a requester to post

a new task with required parameters (for example: required

CPU/GPU time, memory, expected runtime, any special

hardware needs) and an offered payment. The contracts

broadcast and record this request such that it can be matched

with providers. There is also logic for job history and audit –

once a job is completed, its outcome (success/failure, time

taken, provider identity) can be logged on-chain, building an

immutable history. This history not only ensures transparency

but can feed into provider reputation systems. The contract

also includes dispute resolution mechanisms; for instance, if a

requester claims the result was incorrect, there is an arbitration

process before releasing funds. By handling job postings,

assignments, and confirmations on-chain, LinqProtocol

creates a trust-minimized workflow where each step is

transparently recorded.

●​ Example Request Flow: To illustrate, consider a user who

needs a machine learning model trained. The user’s client (via

the UI or SDK) calls the Job Request contract, posting a task

description (e.g. “train model X for N iterations”) and a

reference to a container containing all the necessary data along

with an escrowed payment. Providers monitoring the contract

see this request; one provider with sufficient GPU capacity

accepts the job by calling the contract, which then formalizes

the assignment (locking in that provider). The provider’s

off-chain node downloads the container (as permitted by the

job details), runs the training computation, and upon

completion, submits a proof or output summary back on-chain

to a job completion function. The proof mechanism must be

11

specified by the user within the job container, which may

include logs, intermediate checkpoints, or server accessibility

for validation. The contract verifies that the required result is

provided and then releases the escrowed LNQ payment to the

provider’s address after a number of days, assuming no

dispute was submitted by either party. If the provider fails to

deliver in time, the contract might cancel the assignment

(freeing the requester’s escrow) and lower the provider’s

on-chain reputation or slash a portion of their stake. This

entire sequence is executed without a central coordinator,

relying on the deterministic logic of smart contracts to ensure

fairness.

Overall, the smart contract layer acts as the marketplace coordinator

– matching offers to needs and holding each party accountable. By

deploying these contracts on a robust Layer-2 network, LinqProtocol

ensures transactions (like posting a job or paying a provider) are fast

and incur minimal fees, which is crucial for a high-volume

marketplace.

2.2 Off-Chain Decentralized Compute Nodes

The actual computational work in LinqProtocol is performed by the

off-chain network of provider nodes. These nodes are diverse

computers run by individuals or organizations, contributing their

processing power to the marketplace. The architecture of this layer

emphasizes secure, efficient execution and coordination across

potentially thousands of nodes:

●​ LinqProtocol Client: Each provider runs the LinqProtocol

client software on their machine, which connects them to the

decentralized network. This client serves as the gateway

between the blockchain and the node’s hardware. It listens

for job assignments from the smart contract layer (e.g., events

12

indicating “job X assigned to provider Y”) and handles the

off-chain retrieval of the task data and code. The client then

executes the task on the local machine, monitors its progress,

and finally returns results (if required) to the blockchain.

Essentially, the client automates all aspects of participation for

the provider – from bidding on tasks (according to the

provider’s policy) to container setup and result submission –

so that once configured, a provider’s machine can trustlessly

work on tasks with minimal manual intervention.

●​ Managerial APIs: To allow flexibility and integration,

LinqProtocol offers managerial APIs and tools for both

providers and requesters. For providers, the API (or a

management console) can let them specify their node’s

operational parameters: availability schedule, resource limits

(e.g., only use 50% of CPU), pricing preferences (minimum

bid acceptable), etc. This makes the marketplace more

dynamic, as providers can tune their participation. For

requesters (especially enterprise users or SaaS platforms

integrating LinqProtocol), an API/SDK is provided to

programmatically submit jobs, check statuses, and retrieve

results. These managerial interfaces abstract the complexity of

blockchain interactions into familiar REST or RPC calls,

which is crucial for adoption in existing software workflows.

●​ Load Balancing and Task Scheduling: In cases where a

computational job is parallelizable or very large,

LinqProtocol can distribute it across multiple nodes. The

off-chain clients include logic for splitting workloads if the

task definition allows (for example, rendering many frames of

an animation or searching a parameter space can be

partitioned). A built-in load balancing mechanism

(coordinated by either a decentralized algorithm or via

on-chain coordination) will assign different segments of a

large job to different providers to achieve concurrency. The

13

network can thus act as a distributed cluster for

embarrassingly parallel tasks. Additionally, if one provider

node is capable but the user requests redundancy for

reliability, the system could schedule the same task on two

nodes and compare outputs (useful for verification of results).

LinqProtocol’s architecture contemplates these scenarios to

maximize throughput and reliability of computations.

●​ Secure Networking Between Nodes: Providers may

sometimes need to communicate with each other for

multi-node tasks (for example, exchanging intermediate data

in a distributed computing job). To facilitate this, LinqProtocol

establishes secure peer-to-peer networking channels between

nodes as needed. One approach is using a VPN-like overlay

network where each provider’s client connects to a private,

encrypted tunnel when collaborating on a job. This ensures

that any data exchanged (which might be proprietary or

sensitive) does not leak to the public internet and that only

authorized nodes (those participating in the same job) can

communicate. The use of end-to-end encryption (e.g., via

elliptic-curve cryptography as referenced in similar systems​​

[11]) protects the integrity and confidentiality of data.

Moreover, the networking layer handles NAT traversal and

connectivity so that nodes across various networks (home

broadband, corporate firewalls, etc.) can still form a mesh for

data exchange.

●​ Containerization: To maintain a consistent runtime

environment across heterogeneous provider machines,

LinqProtocol employs containerization (e.g., Containerd,

which is used in Docker, or other Open Container

Initiative-compatible runtimes). While Docker itself does not

perform virtualization and instead shares the host OS kernel,

LinqProtocol plans to utilizes Kata Containers or Confidential

Containers for virtualization to ensure enhanced security and

14

workload isolation. When a job is dispatched to a provider, it

comes packaged as a container image or with instructions to

fetch a container image that contains the execution

environment and code. The LinqProtocol client on the

provider’s machine will launch the job inside a container

sandbox. This has multiple benefits: it isolates the job from

the host system (for security and stability), ensures that all

dependencies and software versions are exactly as the

requester intended (increasing reproducibility), and allows

running untrusted code more safely. Providers do not have to

manually set up each application’s environment; the system

automates pulling the required container image (possibly from

a decentralized storage if integrated, or from the requester

directly). After execution, the container can be destroyed to

clean up, leaving the host in its original state. Containerization

thus standardizes execution on the distributed network.

●​ Secure Execution Environments: For higher security needs,

LinqProtocol can integrate secure execution technologies.

This might include leveraging Trusted Execution

Environments (TEE) like Intel SGX or AMD SEV, or

isolated VMs, if tasks involve sensitive data that the requester

encrypts. In such cases, the provider’s node would run the

computation in a hardware-enforced enclave so that even the

provider cannot inspect the code or data in plaintext – only the

final result is revealed. While not all nodes will support TEEs,

those that do can advertise this capability (via the registration

contract) and attract jobs requiring confidential handling.

LinqProtocol’s design leaves room for verifiability add-ons,

such as using redundant computation or zero-knowledge proof

techniques, to ensure that malicious providers cannot spoof

results without detection. The combination of sandboxing,

encryption, and optional verification provides a high level of

trust in off-chain execution.

15

●​ System Requirements: To ensure a baseline quality,

LinqProtocol defines minimum system requirements for

participating provider nodes. These include hardware and

software criteria (for example, a provider might need at least a

64-bit Linux OS, x86_64 CPU with SSE4 support, a certain

amount of RAM, etc.). Providers will also need a stable

internet connection with adequate bandwidth to transfer job

data. The LinqProtocol client performs self-tests during

registration to verify the node meets these requirements (e.g.,

benchmarking CPU/GPU, testing network latency). Nodes

that do not meet the minimum standards can be filtered out or

have limited roles, which protects the network from unreliable

participants. As the network grows, requirements might be

tiered – allowing nearly any device for small tasks, but

reserving big tasks for nodes that have proven capabilities or

have staked more tokens (indicating commitment). Ensuring

that providers are robust helps maintain the overall

performance and reputation of the marketplace.

Component Minimum
Requirement

High‑End
Recommendation

Operating
System

Linux (e.g., Ubuntu) Linux (e.g., Ubuntu)

CPU Intel Core i5 / AMD
Ryzen 5

Intel Core i9 / AMD
Ryzen 9

RAM 8 GB 64 GB

GPU Optional for non‑GPU
tasks

Nvidia RTX 4080 or
better, 16 GB VRAM

Storage 256 GB SSD 1 TB NVMe SSD

Network 10 Mbps, < 400ms
latency

100 Mbps, < 400ms
latency

16

Table 1: Example system requirements for providers participating in

LinqProtocol.

In essence, the off-chain layer transforms a loose collection of

volunteer machines into a cohesive distributed cloud, by enforcing

uniform execution via containers, enabling communication through

secure tunnels, and coordinating their efforts via the on-chain

commands. This design allows LinqProtocol to harness a wide variety

of hardware spread across the globe and present it to users as a single,

reliable computing platform.

2.3 User Interfaces

To make LinqProtocol accessible to end-users and developers, a set of

user interface components is provided on top of the core protocol.

These interfaces hide the complexity of blockchain interactions and

distributed systems, offering a smooth user experience akin to

traditional cloud services:

●​ Request Dashboard: A web-based dashboard allows users to

interact with LinqProtocol visually. Through this dashboard, a

user can log in (via a web3 wallet for authentication), deposit

tokens, and then submit compute jobs with a friendly

form-based interface. They can specify parameters of their

request (for example, uploading input files or selecting a task

type from a predefined list), set the bounty/payment they are

offering, and then monitor the status of their jobs in real time.

The dashboard would display the progress of each request,

show which provider is executing it (or if it’s in a bidding

phase), and the time remaining or completed output. It may

also show analytics such as cost estimates, past usage history,

and performance metrics. Essentially, the dashboard acts as

the “front-end” of the decentralized cloud for non-technical

users or those who prefer a GUI (Graphical User Interface),

17

similar to how one would use AWS console to spin up an

instance.

●​ SDK (Software Development Kit): For developers who want

to integrate LinqProtocol’s functionality into their own

software or automated pipelines, an SDK is provided in

multiple programming languages. The SDK wraps around the

blockchain API and network calls, allowing developers to, for

example, submit a job with a single function call in Python or

JavaScript. They can programmatically check job results,

handle callbacks when a job finishes, or even build custom

workflows that involve LinqProtocol as a back-end compute

engine. This is crucial for adoption in enterprise and research

environments – for instance, a data science platform could use

the SDK to offload heavy computations to LinqProtocol

without the end-user even knowing that a decentralized

network is doing the work behind the scenes. The SDK would

manage the details like interacting with the user’s crypto

wallet for payments, splitting tasks if needed, and retrieving

results, so that developers interact with a high-level API rather

than low-level smart contract calls.

●​ Command Line Interface (CLI): For power users and for

scripting purposes, LinqProtocol offers a CLI tool. This allows

users to interact with the network through terminal commands

– for example, one could run:

linq submit --resource resource.yaml --duration 2h

--image "docker.io/tensorflow/serving:latest"

to submit a Docker container that requires a GPU for 2 hours.

The CLI would handle packaging the task, uploading it, and

initiating the on-chain request. Users could then use

commands like linq status <job_id> to see progress or

linq fetch <job_id> to download results. The CLI is

especially useful for integrating LinqProtocol into DevOps

18

workflows or for users who prefer automation and text-based

interfaces (e.g., researchers who want to launch jobs from a

remote server or integrate with batch scheduling systems).

All these interfaces aim to make the decentralized nature of

LinqProtocol nearly invisible to the end user. By providing familiar

tools (web dashboards, APIs, CLIs), LinqProtocol lowers the barrier

to entry. The user interface layer ensures that whether one is a casual

user with a single job, a developer integrating compute services, or a

provider setting up a node, they have a straightforward way to engage

with the platform. This focus on usability is key to broad adoption

and distinguishes LinqProtocol as not just a protocol for blockchain

enthusiasts, but as a practical solution for the wider computational

market.

3. Opportunity in Synthetic Data Generation

One of the initial target applications for LinqProtocol is synthetic

data generation, a computationally intensive task well-suited to

decentralized, parallel execution. Synthetic data generation refers to

creating artificial datasets that mimic real data, often used to train

machine learning models or test algorithms when real data is scarce or

sensitive. Synthetic data is not “fake data” and an important

distinction between these concepts is the existence of statistical

significance. Fake data carries absolutely no statistical significance

and is in effect completely useless whereas synthetic data contains

statistical significance. This includes generating realistic images, text,

sensor readings, or other forms of data through simulation or AI

models (e.g., GANs or physics engines). Such tasks are extremely

demanding in terms of compute power – for instance, training a

state-of-the-art generative model can require thousands of GPU hours,

and producing large volumes of synthetic data (say millions of images

or records) can take significant time on a single machine​ [12]. Thus,

19

there is a strong incentive to parallelize these workloads across many

processors.

Decentralized computing is optimal for parallelizable tasks like

synthetic data generation. Many synthetic data tasks can be broken

down into independent units of work. For example, consider

generating a synthetic image dataset: one could run N instances of a

generative model in parallel, each producing a subset of images, and

then combine the results. Similarly, in simulation-based synthetic data

(such as creating virtual sensor logs or simulating user behavior), one

can run multiple simulations concurrently with different random seeds

or parameters. LinqProtocol’s network, with its distributed nodes, can

naturally accommodate this by assigning different portions of the task

to different providers simultaneously. A job that might take 10 hours

on one high-end GPU could potentially be completed in 1 hour by

using 10 GPUs distributed through the network, assuming the task

scales linearly. This embarrassingly parallel nature means the

time-to-completion for large-scale synthetic data projects can be

dramatically reduced using LinqProtocol.

Another reason synthetic data generation is a fitting opportunity is the

increasing demand and value of such data across industries.

According to market research, the global synthetic data generation

market was valued at about $218 million in 2023 and is projected to

grow at an annual rate of over 35%, reaching a multi-billion dollar

scale by 2030​ [13]. This surge is driven by the needs of AI model

training (especially as privacy regulations restrict the use of real

personal data) and by industries like autonomous vehicles, healthcare,

and finance that require vast amounts of scenario data. For example,

autonomous vehicle companies generate countless hours of simulated

driving data to train their systems for rare events; similarly, banks

might generate synthetic transaction logs to improve fraud detection

algorithms without risking customer data privacy. These use cases

often require generating massive datasets in a short time frame,

20

which translates to a huge, but intermittent, compute demand.

Purchasing and maintaining enough in-house hardware to handle

these peak loads is inefficient, and renting equivalent capacity from a

centralized cloud can be cost-prohibitive due to high GPU instance

prices. LinqProtocol can offer a more cost-effective alternative by

tapping into idle GPUs across the world to meet this demand

on-the-fly.

Moreover, LinqProtocol’s SaaS-demand-first strategy means it can

offer a ready-to-use synthetic data generation service on top of the

raw compute marketplace. Rather than initially expecting users to

bring their own complex compute jobs, LinqProtocol will provide a

higher-level service where users simply request the type of synthetic

data they need (e.g., “generate 100,000 labeled images of street

scenes” or “simulate 1 year of network traffic logs”). Behind the

scenes, that SaaS service converts the request into distributed

compute tasks on the LinqProtocol network. This strategy ensures

there is built-in demand for computation from day one, solving the

chicken-and-egg problem by effectively acting as an initial major

user of the platform. It demonstrates the platform’s capability and

provides immediate value to clients who might just want data, not

necessarily to manage computing jobs themselves.

In terms of implementation, synthetic data generation jobs on

LinqProtocol will leverage its technical strengths: containerized

environments can include popular generative model frameworks

(TensorFlow/PyTorch with pre-trained models that can be fine-tuned

or sampled), and secure execution can be used if proprietary models

or sensitive base data are involved. The ability to load-balance means

if a request is for a very large dataset, the task can be split among

dozens of providers – each generating a chunk of data – and the final

dataset is aggregated and delivered to the user. Because synthetic data

tasks usually don’t require intensive inter-node communication (each

generator mostly works on its own portion), they are not bottlenecked

21

by network bandwidth in the way some tightly-coupled HPC tasks

are. This makes them ideal to run on a geographically distributed

network with varying node capacities.

To illustrate, imagine a synthetic data mining scenario. We will

assume for the sake of argument that LinqAI has access to a GAN

(Generative Adversarial Network) which is capable of generating

statistically accurate MRI images. A medical research group needs a

simulated dataset of MRI images for a rare condition, to augment

their real data for a deep learning model. They use LinqProtocol’s

synthetic data SaaS, which internally has a GAN model capable of

producing MRI-like images. The request for, say, 10,000 images is

broadcast as jobs to 50 provider nodes (200 images each). Each node,

running the GAN in a container, generates its share of images and

sends them back (perhaps uploading to a distributed storage

accessible to the requester). Within hours, the researcher has the full

dataset, which would have taken days on a single machine. The

researcher pays in LNQ tokens for the aggregated compute used, and

those tokens are distributed to the 50 providers according to their

contributions.

By focusing on synthetic data generation as a flagship use-case,

LinqProtocol not only addresses a pressing need in the AI/data

science community but also showcases the advantages of

decentralized computing in a tangible way. It provides a virtuous

cycle: the synthetic data service creates baseline demand for the

network, which attracts providers; those providers enable fast, cheap

data generation, which in turn attracts more users from the data

science community to use the service or even bring new types of

tasks. In the long run, success in this domain can be replicated in

other domains that share similar characteristics (highly parallel,

compute-heavy, intermittent demand), such as Monte Carlo

simulations in finance, protein folding computations in biotech, or

22

rendering in entertainment. Synthetic data is thus an optimal

beachhead market for LinqProtocol to prove its value.

4. LNQ Token Economy

LinqProtocol’s token, LNQ, is integral to the economic design and

governance of the platform. The token is not merely a currency for

transactions but is woven into the trust and incentive mechanisms that

keep the marketplace balanced and secure. Key aspects of the LNQ

token economy include:

●​ Utility in Payments: LNQ serves as the unit of value

exchange between requesters and providers. When a requester

wants to utilize compute resources, they pay in LNQ tokens

which are placed into the smart contract escrow for the job.

Providers earn LNQ tokens as compensation for completing

tasks. Using a token allows for microtransactions and global

participation without relying on banking rails, and it enables

programmatic escrow and conditional payment through smart

contracts. The pricing of tasks (how many tokens for a certain

amount of compute) will be determined by the free market

dynamics on the platform – likely starting from benchmarks

and then fluctuating with supply and demand. To reduce

volatility risk, especially for enterprise users, LinqProtocol

might integrate stablecoin channels or dynamic pricing

oracles, but LNQ remains the primary medium that fuels the

marketplace.

●​ Escrow and Staking Mechanics: As described in the

architecture, LNQ is used in escrow for each job to ensure fair

payment. Beyond that, LNQ tokens are also used for provider

staking. Providers may be required to lock up a certain

amount of LNQ as a security deposit when they register. This

stake can be slashed (forfeited) if the provider behaves

maliciously or fails to honor tasks consistently. For example,

23

if a provider frequently aborts tasks or returns incorrect results

(as determined by verification or dispute resolution), a portion

of their staked tokens might be deducted as a penalty. This

economic disincentive encourages honest participation. On the

flip side, staking can be tied to reputation – providers who

stake more LNQ could be given preference for high-value

tasks or larger jobs, under the assumption that a higher stake

signals higher commitment and trustworthiness. The escrow

and staking together create a two-way safety net: requesters

are assured that their payment is locked until job completion,

and providers are signaling their reliability through staked

tokens.

●​ Token Incentives and Inflation: To jumpstart the network,

LinqProtocol may implement token incentive programs. For

instance, a certain amount of LNQ might be set aside as block

rewards or task completion rewards to early providers,

supplementing the payments from requesters. This is

analogous to mining rewards in blockchain networks – here

providers “mine” by contributing compute. Such inflationary

rewards can compensate providers when user demand is still

growing, and can be tapered off as the marketplace becomes

self-sustaining with fee revenue. The token’s supply model

(fixed cap, inflationary, or deflationary via burns) is carefully

designed to ensure long-term viability.

●​ Governance Role: LNQ tokens will also confer governance

rights in the LinqProtocol ecosystem. As the platform

matures, decisions about system upgrades, parameter tuning

(like fee rates, staking requirements, new features), or treasury

allocation can be made through a decentralized governance

process.

●​ Governance and Dispute Resolution: A dedicated role exists

for community members who would like to participate in

dispute resolution. By way of staking LNQ members will be

24

able to be selected randomly to vote on the result of a dispute.

These members will have access to all the necessary

information regarding the transaction and will be able to

verify independently whether the provider or requestor should

be held accountable for the dispute.

●​ Monetization and Sustainability: The token economy is

structured such that as usage grows, the value of LNQ and its

demand within the ecosystem grow as well. More computation

being traded means more LNQ flowing through escrows and

possibly more locked in staking (reducing circulating supply).

The long-term sustainability comes from a virtuous cycle: a

useful platform attracts users, which drives token utility; a

valuable token incentivizes more providers and token holders

to invest in the network; and a broad token distribution

through mining/staking ensures decentralized ownership.

The LNQ token is the lifeblood of LinqProtocol’s decentralized

marketplace, enabling decentralized trust (through escrow and

staking) and decentralized governance. Its economy is crafted to

reward early participants, discourage bad actors, and evolve the

platform through community consensus. By aligning incentives of all

parties – requesters get cheap reliable compute, providers earn tokens

for their resources, and token holders benefit from the ecosystem

growth – LNQ plays a pivotal role in nurturing a self-sufficient

compute economy.

5. Roadmap

LinqProtocol’s development and deployment will progress in phased

stages, focusing first on core functionality and a compelling use-case,

then expanding and decentralizing over time. Below is a high-level

roadmap outlining these phases.

25

Phase 1: Foundation and Testnet Launch – The initial phase

centers on building the fundamental infrastructure of LinqProtocol

and validating it in a controlled environment. This involves smart

contract development (for escrow, registry, job handling) and

deploying them on a testnet of the chosen Layer-2 blockchain.

Concurrently, the first version of the provider client and basic user

interfaces will be developed. During this phase, the goal is to achieve

an end-to-end working prototype: a simple job can be posted via the

dashboard or CLI, a test provider client picks it up, executes a dummy

computation, and the result and payment flow through the test

contracts. Extensive testing will be done to ensure security (e.g.,

trying to break the escrow logic, testing failure recovery). Phase 1

will involve a closed group of alpha testers – perhaps partner

institutions or community developers – who run provider nodes on

testnet and help shake out bugs. Key deliverables include a publicly

released whitepaper, open-source code repositories, and

documentation for how to run a node or submit a job on testnet. By

the end of Phase 1, LinqProtocol will have a stable testnet with a

small network of nodes and a basic provider node services running on

top to showcase the concept.

Phase 2: Mainnet Beta with Synthetic Data Service – In Phase 2,

LinqProtocol will launch on its target mainnet (initially likely an

Ethereum Layer-2 or similar high-throughput chain) in a beta mode.

The focus here is on the SaaS-demand-first rollout. The synthetic

data generation service will be rolled out to early users (for example,

select AI startups, research labs, or through a hackathon) to generate

real workloads on the network. To ensure those jobs are fulfilled, a

cohort of early provider partners will be onboarded – these might

include data center operators with spare capacity or crypto miners

repurposing GPUs to provide compute. Incentive programs using

LNQ token rewards will likely be active in this phase to subsidize

usage: e.g., users might get a certain amount of free compute credit in

26

LNQ for trying the service, and providers might earn bonus tokens for

maintaining uptime. During this beta, the team will monitor

marketplace dynamics closely – adjusting parameters like default

pricing, timeouts, or job replication factor to ensure reliability. The

user interfaces (dashboard, SDK, CLI) will be refined based on

feedback, making them more robust and user-friendly. This phase will

also likely include security audits of the smart contracts and perhaps a

third-party review of the platform’s architecture. By the end of Phase

2, the aim is to have a functional marketplace with actual paying users

and a growing base of providers, essentially proving the concept in a

real-world setting, though possibly with caps on usage or other

safeguards since it’s a beta.

Phase 3: Expansion of Use Cases and Decentralization – With the

synthetic data generation use-case driving initial traction, Phase 3 will

broaden LinqProtocol’s scope. Technically, this is when the platform

opens up more generally – allowing users to submit arbitrary

containerised jobs, not just those related to the initial SaaS. Outreach

will be done to communities like scientific computing, financial

modeling, CGI rendering, and more, to onboard new demand streams.

On the supply side, LinqProtocol will work on further

decentralization: encouraging anyone to run a provider node in a

permissionless manner. This might involve releasing easy installation

scripts, supporting more operating systems, and perhaps lightweight

clients for less powerful devices. The network could also integrate

decentralized storage solutions at this stage (for handling

input/output files of jobs via IPFS, Arweave or others), making it

more resilient and censorship-resistant. The token economy might

also evolve: if inflationary rewards are used, a plan to taper them and

rely more on transaction fees would be executed to move towards

sustainability. By the end of Phase 3, LinqProtocol should be a

versatile, open marketplace supporting a variety of computational

workloads, and its operation and evolution would be increasingly

27

governed by the community of token holders and users rather than the

core team alone.

Phase 4: Maturity and Ecosystem Integration – In the long-term

phase, LinqProtocol aims to become a critical piece of the broader

decentralized infrastructure ecosystem. This phase involves deep

integration and partnerships: for example, integrating with major

blockchain platforms as an off-chain compute oracle (allowing smart

contracts on other platforms to outsource heavy computations to

LinqProtocol), or partnering with IoT projects to utilize edge device

compute, etc. Technical enhancements likely in this phase include

implementing advanced verification (like zero-knowledge proofs of

computation for certain tasks), optimizing network performance. At

this stage there will be good motivation for the creation of a custom

blockchain (for instance LinqChain), purpose built to ensure optimal

performance of LinqProtocol incentivising further developer

expansion while still allowing the LNQ token economy to benefit

from the open-source nature of the project by creating the premiere

chain for any decentralized computing protocol to run upon. The

marketplace would also refine its matching algorithms using

accumulated data – perhaps employing AI to predict pricing and

match jobs to optimal nodes for efficiency. In terms of outreach,

LinqProtocol would position itself alongside centralized cloud

providers as part of a hybrid cloud strategy for businesses: some

workloads on AWS/Azure, and overflow or specialized workloads on

LinqProtocol for cost and speed benefits. By the end of Phase 4, the

vision is that LinqProtocol is a fully self-sustaining network, with a

broad and balanced user base, recognized not just in the crypto

community but in the broader tech industry as a viable alternative

infrastructure. The token would be widely distributed, and the

project’s success metrics would be measured in real-world impact –

e.g., how many computations served, how much value transferred to

28

resource providers, and how many important problems (like AI model

trainings or scientific discoveries) were powered by the network.

Throughout these phases, LinqProtocol will maintain an academic

and community collaboration approach – engaging with

researchers (for instance, to validate security or to publish results on

the efficacy of decentralized computing) and standardization bodies.

Each phase transition will be accompanied by evaluation periods

where data from the previous phase is analyzed and published,

helping guide the next phase’s objectives. This phased roadmap

ensures that LinqProtocol grows carefully, proving its assumptions at

each step, and steadily moving from a controlled launch to an open,

widely-used platform that realizes the promise of decentralized

computing. The end goal is a future where anyone in the world can

access vast computational power on-demand through LinqProtocol,

and anyone with a compute resource can contribute and earn – all

mediated by the elegant interplay of blockchain and distributed

systems.

References

1.​ “ A 2014 report by NRDC estimated average server utilization

at 12 to 18 percent and noted that it had largely remained

static from 2006 through 2012”,

https://www.energystar.gov/products/data_center_equipment/1

6-more-ways-cut-energy-waste-data-center/consolidate-lightly

-utilized-servers#:~:text=most%20servers%20run%20at%20a

,2

2.​ “In the short, the NRDC has estimated that as many as a full

1/3rd of servers are drawing power but no longer used by the

organization for any production. To make matters worse, a

single watt of power drawn at the server is estimated to

29

consume 2.2 watts total between the server itself, transmission

losses, and cooling requirements. Finally, older servers (those

most likely to be dormant) were inherently less energy efficient

at idle. The end result is nearly 40% of all data center energy

usage is simply waste. “ - Sean Cotter,

https://assetvue.com/a-recent-nrdc-study-says-data-centers-co

uld-save-up-to-3-billion-annually/#:~:text=In%20the%20shor

t%2C%20the%20NRDC,energy%20usage%20is%20simply%

20waste

3.​ “Unfortunately, the centralized cloud has many shortcomings.

First, it is susceptible to a single point of failure. On 14

December 2020, multiple Google Cloud services and websites,

including YouTube, Gmail, Google Assistant and Google

Docs, were down for approximately one hour due to a

widespread outage.2 Because cloud computing is

Internet-based, service outages can happen at any time and

for any reason, and users have very little control over these

situations. In addition, centralized cloud servers are

concentrated in one or several locations. In the event of an

outage or other type of failure, a large number of related

services are often paralyzed or even at risk of permanent data

loss.”, “A pragmatic solution to these shortcomings is to

decentralize the cloud with artificial intelligence (AI) and

blockchain. The decentralized cloud computing model

promises to support scalable applications while retaining the

safeguards of a decentralized, trust-minimized ecosystem.”,

“...the cost of a centralized cloud is high. It requires an

expensive data center that must be maintained and secured by

skilled technical staff. It is also expensive to support data

accessibility with duplication. The centralized cloud is very

resource intensive, requiring multiple servers, load balancers

and other facilities that must be meticulously managed and

secured.”,

30

https://www.isaca.org/resources/isaca-journal/issues/2021/vol

ume-5/decentralized-cloud-computing#:~:text=Unfortunately

%2C%20the%20centralized%20cloud%20has,at%20risk%20

of%20permanent%20data

4.​ “...for scientists, volunteer computing is cheaper than other

paradigms – often dramatically so. A medium-scale project

(10,000 computers, 100 TeraFLOPS) can be run using a

single server computer and one or two staff – roughly

$200,000 per year. An equivalent CPU cluster costs at least

an order of magnitude more. Cloud computing is even more

expensive. For example, Amazon Elastic Computing Cloud

instances provide 2 GigaFLOPS and cost $2.40 per day. To

attain 100 TeraFLOPS, 50,000 instances would be needed,

costing $43.8 million per year. (However, studies suggest that

cloud computing is cost-effective for hosting volunteer

computing project servers.)” - David P. Anderson, Space

Sciences Laboratory, University of California, Berkeley,

https://boinc.berkeley.edu/boinc_papers/crossroads.pdf#:~:tex

t=expensive,%28However%2C%20studies

5.​ “Global demand for computing power is surging, and leading

data center players are readying a massive deployment of

capital—$1.8 trillion from 2024 to 2030—to meet the need.

This rapid expansion reflects a growing bet on data-intensive

technologies, from traditional enterprise workloads to GenAI

applications.” - Vivian Lee, Pattabi Seshadri, Clark O’Niell,

Archit Choudhary, Braden Holstege, and Stefan A. Deutscher,

https://www.bcg.com/publications/2025/breaking-barriers-dat

a-center-growth#:~:text=Global%20demand%20for%20comp

uting%20power,workloads%20to%20%20GenAI%20applicati

ons

6.​ “The global high performance computing market size was

valued at USD 50.02 billion in 2023 and is projected to grow

from USD 54.39 billion in 2024 to USD 109.99 billion by

31

2032, exhibiting a CAGR of 9.2%. North America dominated

the global market with a share of 40.78% in 2023.”,

https://www.fortunebusinessinsights.com/industry-reports/high

-performance-computing-hpc-and-high-performance-data-ana

lytics-hpda-market-100636#:~:text=The%20global%20high%

20performance%20computing,in%202023

7.​ “Between 2012 and 2018, the amount of computing power

used by record-breaking artificial intelligence models doubled

every 3.4 months. Even with money pouring into the AI field,

this trendline is unsustainable. Because of cost, hardware

availability and engineering difficulties, the next decade of AI

can't rely exclusively on applying more and more computing

power to drive further progress.” - Andrew Lohn, Micah

Musser,

https://cset.georgetown.edu/publication/ai-and-compute/#:~:t

ext=Between%202012%20and%202018%2C%20the,power%

20to%20drive%20further%20progress

8.​ “In 1999 two new projects were launched: SETI@home, from

U.C. Berkeley, analyzes data from the Arecibo radio telescope,

looking for synthetic signals from space. Folding@home, from

Stanford, studies how proteins are formed from gene

sequences. These projects received significant media coverage

and moved volunteer computing into the awareness of the

global public.”, “about 900,000 computers are actively

participating in volunteer computing. Together they supply

about 10 PetaFLOPS (trillion floating-point operations per

second) of computing power; the fraction supplied by GPUs is

about 70% and growing. For comparison, the fastest

supercomputer supplies about 1.4 PetaFLOPS, and the largest

grids number in the tens of thousands of hosts. So in terms of

throughput, volunteer computing is competitive with other

paradigms, and it has the near-term potential to greatly

surpass them: if participation increases to 4 million

32

computers, each with a 1 TeraFLOPS GPU (the speed of

current high-end models) and computing 25% of the time, the

result will be 1 ExaFLOPS of computing power; other

paradigms are projected to reach this level only in a decade or

more. Actually, since 4 million PCs is only 0.4% of the

resource pool, the near-term potential of volunteer computing

goes well beyond Exa-scale.” - David P. Anderson, Space

Sciences Laboratory, University of California, Berkeley,

https://boinc.berkeley.edu/boinc_papers/crossroads.pdf#:~:tex

t=In%20the%20mid,Berkeley%2C%20analyzes

9.​ “These platforms connect underutilized GPU and CPU

resources with enterprises and developers, providing an

alternative to investing in costly hardware. Despite challenges

such as competition with major cloud providers and

regulatory uncertainties, these networks aim to democratize

access to high-performance computing resources.” - Olga

Yashkova,

https://www.idc.com/getdoc.jsp?containerId=US52760324#:~

:text=Decentralized%20Digital%20Marketplace%20for%20C

omputing,to%20investing%20in%20costly%20hardware

10.​“Despite the promise of lower costs and increased

accessibility, the adoption rates for services like GPU leasing

on Akash have been modest. This highlights a critical

challenge for decentralized compute platforms: the need to

balance supply with actual demand. Although Akash has

shown impressive metrics for on-chain adoption, the

utilization rates for its computational resources indicate that

supply still outpaces demand, suggesting that the sector has

yet to fully capitalize on its potential market.”,

https://www.reflexivityresearch.com/free-reports/overview-of-d

ecentralized-compute#:~:text=Despite%20the%20promise%2

0of%20lower,capitalize%20on%20its%20potential%20market

33

11.​“...architecture is presented in Figure 3. The P2P network

maintains the connection between nodes using end- to-end

encryption elliptic-curve. Providers offer one or more nodes,

and services are executed directly on the node or in sandboxed

environments. In this case, Dockers and Virtual Machines

(VMs) are supported; data are shared and stored in the

distributed storage module, which is based on IPFS 5 , a

hypermedia distribution protocol for P2P systems. Developers

can create specific applications, using a developer kit, and

templates in the task definition framework, to make their

applications available in the application registry of the Golem

Network. The template contains the computation logic, the

code to be executed, the specification of how to split services

into tasks and how to merge and verify results. If consumers

want to run custom applications, they should define them

using the task definition” - Rafael Brundo Uriarte, Rocco De

Nicola,

https://www.researchgate.net/figure/General-Architectures-of-

Golem-iExec-and-SONM_fig3_326346449#:~:text=,The%20t

emplate%20contains%20the

12.​“Synthetic data is artificially generated data that mimics the

characteristics of real-world data. It can train and test

machine learning models, especially when real-world data is

limited, sensitive, or expensive. A study by McKinsey &

Company found that synthetic data can reduce data collection

costs by 40% and improve model accuracy by 10%.” - [x]cube

LABS,

https://www.xcubelabs.com/blog/synthetic-data-generation-usi

ng-generative-ai-techniques-and-applications/#:~:text=,can%

20require%20thousands%20of%20GPUs

13.​“The global synthetic data generation market size was valued

at USD 218.4 million in 2023 and is projected to grow at a

CAGR of 35.3% from 2024 to 2030. The emergence and

34

increasing application of technologies such as Artificial

Intelligence (AI), Machine Learning (ML), and the Internet of

Things (IoT), an increasing use of connected device

technology, is primarily driving the growth of this market. In

addition, the rising dependence on business processes such as

effective marketing and customer engagement on data

availability, especially in industries such as entertainment and

media, retail, and others, is developing an upsurge in demand

for data generation.”, ​

https://www.grandviewresearch.com/industry-analysis/syntheti

c-data-generation-market-report#:~:text=The%C2%A0global

%20synthetic%20data%20generation%20market,in%20dema

nd%20for%20data%20generation

35

	
	Abstract
	Table of Contents
	
	1. Problems Decentralized Compute Solves
	1.1 Landscape of Opportunity
	1.2 Challenges with Existing Decentralized Compute Platforms
	2. Technical Architecture of LinqProtocol
	2.1 Smart Contract Layer
	2.2 Off-Chain Decentralized Compute Nodes
	2.3 User Interfaces
	3. Opportunity in Synthetic Data Generation
	4. LNQ Token Economy
	5. Roadmap
	References

