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Abstract 

LinqProtocol is a decentralized computing marketplace deployed on a 

blockchain Layer-2 network, designed to unlock underutilized 

computing resources. It takes a SaaS-demand-first approach by 

seeding the network with real workloads (such as synthetic data 

generation services) to overcome the traditional supply–demand 

bootstrapping challenge. Idle hardware from data centers and edge 

providers can be repurposed through LinqProtocol’s platform, 

creating a cost-effective and scalable alternative to centralized cloud 

computing. Smart contracts handle bidding, escrow of payments, and 

job orchestration in a trust-minimized way, while off-chain nodes 

perform computations in secure containerized environments.  

This litepaper discusses the inefficiencies in current centralized 

computing, the market opportunity for decentralized solutions, 

technical architecture of LinqProtocol, and our unique approach to the 

problems plaguing existing decentralized compute solutions. 
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1. Problems Decentralized Compute Solves 

Figure 1: Underutilized servers in a traditional data center. Studies 

show average server utilization can be as low as 12–18%​, leading to 

wasted energy and capital. 

Contemporary cloud computing infrastructure suffers from significant 

inefficiencies and centralization risks. In many enterprise data centers, 

servers run at a low utilization rate – often only around 12–18% on 

average​. [1] A substantial fraction of machines are powered on but 

doing little or no work; an estimated one-third of servers in data 

centers are “zombie” servers drawing power without contributing 

useful computation, accounting for nearly 40% of energy usage being 

effectively wasted​ [2]. This underutilization represents not only an 

environmental and economic cost (idle hardware consumes electricity 

and depreciates without delivering value) but also a lost opportunity 

to harness existing compute power for productive tasks. 

In addition to inefficiency, centralized cloud architectures introduce 

points of fragility and high operational overhead. Central cloud data 

centers concentrate resources in a few locations and under a few 

providers, making them susceptible to single points of failure. For 

example, a widespread outage in December 2020 took multiple 

Google cloud services offline simultaneously [3]​, illustrating how 
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failures in a centralized system can cascade and disrupt many 

dependent services. Performance can also be suboptimal for 

distributed users, as data and workloads must be funneled to and from 

distant servers, incurring latency and bandwidth costs [3]. Moreover, 

maintaining large-scale data centers is expensive – providers must 

invest in specialized facilities, cooling, and skilled staff [3], costs that 

ultimately get passed on to users. These high barriers and vendor 

lock-in can stifle smaller enterprises or researchers who need compute 

power but cannot afford large cloud contracts or infrastructure of their 

own. 

Decentralized computing directly targets these issues by distributing 

workloads across a network of independent nodes, thus leveraging 

idle capacity and removing single-company monopolies. By tapping 

into existing hardware (from personal computers and servers at the 

network edge to cloud instances offered by independent providers), a 

decentralized marketplace can increase overall resource utilization. 

Idle machines that would otherwise remain powered on doing nothing 

can perform useful work, effectively recycling computational power. 

This model also inherently mitigates single-point failures – there is no 

central server whose outage would halt the system, since tasks can be 

routed to many alternative nodes. Furthermore, a peer-to-peer 

marketplace introduces competitive pricing for compute resources, 

which can drive down costs for consumers compared to the 

marked-up prices of central cloud providers. Prior research in 

distributed and volunteer computing has demonstrated dramatically 

lower costs: harnessing 10,000 volunteer PCs (~100 TeraFLOPS) was 

estimated to cost an order of magnitude less per year than the 

equivalent cloud instances [4]​. Decentralized compute networks aim to 

solve inefficiencies of low hardware utilization, reduce single-point 

failures, and provide a more cost-effective, scalable supply of 

computing power by aggregating the world’s underused resources. 
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1.1 Landscape of Opportunity 

The demand for computational power is rising exponentially across 

industries, outpacing the capacity of traditional centralized 

infrastructure in many respects. Global data center investment and 

expansion reflect this surge: leading operators are projected to deploy 

about $1.8 trillion from 2024 to 2030 to meet the growing thirst for 

compute [5]. High-performance computing (HPC) and advanced AI 

workloads are a major driver – the global HPC market, for instance, 

was valued around $50 billion in 2023 and is expected to roughly 

double to $110 billion by 2032​ [6]. Particularly with the rise of 

machine learning and generative AI, demand has skyrocketed. The 

computational requirements for state-of-the-art AI models have been 

increasing at an extraordinary rate, with the amount of compute used 

by breakthrough training runs doubling roughly every few months in 

the 2010s​ [7]. This trajectory is widely viewed as unsustainable under 

current paradigms, due to constraints in hardware availability and cost​ 

[7]. In effect, there is a growing gap between the computing power 

industries want and what the conventional cloud oligopoly can 

economically provide. Bridging this gap is a significant opportunity. 

At the same time, there is a vast latent supply of computing 

resources distributed globally. Billions of devices – from data center 

servers to personal computers and IoT nodes – possess CPUs and 

GPUs that are often idle or underused outside of peak periods​ [8]. 

Government and industry reports have highlighted that average 

utilization in enterprise servers remains very low​ [1], and many 

devices sit idle awaiting tasks that never fully occupy their capacity. 

This idle capacity, if networked and made accessible, represents a 

secondary market of compute power that could potentially rival or 

exceed the capacity of dedicated data centers. Notably, volunteer 

distributed computing projects in academia (e.g. SETI@home, 

Folding@home) successfully harnessed hundreds of thousands of 
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ordinary computers to achieve aggregate performance on the order of 

petaflops, comparable to top supercomputers​ [8]. This demonstrates 

the feasibility of aggregating disparate resources for large-scale 

computation. Until recently, however, such efforts were ad-hoc and 

relied on altruism or specific research interest, rather than forming a 

general marketplace. 

Industry analyzes and whitepapers are increasingly acknowledging 

the promise of decentralized cloud solutions to capitalize on this 

opportunity​ [3]. By connecting providers of spare computing power 

with those who need computing, decentralized compute marketplaces 

aim to democratize access to processing resources. This could lead to 

a more efficient market: enterprises and researchers gain access to 

affordable, scalable compute without large upfront investments, while 

owners of underutilized hardware can monetize their equipment. For 

example, an IDC report noted that platforms connecting underused 

GPUs/CPUs with buyers offer an attractive alternative to investing in 

new expensive hardware​ [9]. Decentralized approaches can also 

improve resilience and geo-diversity — distributing compute tasks 

across many locations can reduce dependence on any single data 

center and bring computation closer to where data is generated 

(important for latency-sensitive applications). In sectors like scientific 

research, healthcare, and artificial intelligence, where massive 

computing capacity is needed intermittently, such a marketplace could 

provide burst compute capabilities on demand without long-term 

infrastructure commitments. 

Moreover, new developments in blockchain and distributed systems 

provide the trust framework needed for an open compute marketplace. 

Blockchain smart contracts can handle payments and enforce fair 

exchange (so that providers are paid if and only if the computation is 

completed correctly), while cryptographic verification methods (e.g. 

verifiable computing, proofs of computation) are emerging to validate 

results from untrusted nodes. These innovations address the historical 
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trust barrier that prevented broader use of volunteer computing in 

commercial settings. The landscape is primed for decentralized 

compute solutions: the demand side is eager for more cost-effective 

and scalable compute, and the supply side has abundant idle 

resources — connecting the two through a secure marketplace is a 

timely opportunity. If even a fraction of the world’s dormant 

computing power can be mobilized, it could dramatically expand 

effective computing capacity and alleviate pressure on traditional 

cloud infrastructure. 

1.2 Challenges with Existing Decentralized Compute 

Platforms 

While the case for decentralized computing is compelling, prior 

attempts to build such marketplaces have faced a classic 

“chicken-and-egg” problem in balancing demand and supply. For a 

compute marketplace to be healthy, it needs a critical mass of 

providers (resource suppliers) and requesters (customers with jobs) 

active on the network. In practice, achieving this equilibrium has 

proven difficult. If there are many providers offering capacity but few 

actual tasks to run, providers earn little and may drop out (or never 

join) due to insufficient incentives. Conversely, if there are many 

would-be users but scarce reliable providers, the users will not get 

their jobs done in a timely manner and will abandon the platform. 

This coordination problem has hampered several early decentralized 

compute networks – supply often outpaced real demand in nascent 

stages​ [10], leading to lots of idle provider nodes and disappointed 

expectations. One industry analysis noted that a leading decentralized 

compute network showed impressive on-chain resource offerings but 

very modest actual workload execution, indicating that the sector “has 

yet to fully capitalize on its potential market”​ [10]. Part of the 

challenge is bootstrapping a self-sustaining ecosystem. Traditional 

cloud providers like AWS did not face this two-sided market problem 
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in the same way – they built data centers (supply) in response to 

growing internal and customer needs (demand), essentially growing 

supply and demand in tandem. In an open marketplace model, 

however, the platform must attract two communities simultaneously. 

Early decentralized compute projects have typically started by 

attracting resource providers with the promise of future earnings, but 

without immediate workload demand, those earnings don’t 

materialize, causing attrition. On the other hand, attracting users to 

run jobs requires convincing them that sufficient capacity and 

reliability exist on the network – which is hard to demonstrate without 

an existing provider base and successful track record. This is a classic 

network effect problem: the value of the network to any participant is 

low until many participants are active, but reaching that critical mass 

is itself the main hurdle. 

Another issue observed in existing platforms is maintaining 

marketplace quality and trust. In a decentralized setting, not all 

provider nodes are equal – they may differ in performance, reliability, 

and honesty. Ensuring that tasks are completed correctly and on time 

requires robust protocols (such as benchmarks, reputation systems, or 

verification mechanisms). Some early networks struggled with 

inconsistent performance or complicated processes for users to 

package and verify computations, which limited user adoption beyond 

blockchain enthusiasts. Additionally, volatility in token-based pricing 

or complex onboarding (wallets, staking, etc.) posed barriers for 

mainstream users. These factors, combined with the supply–demand 

imbalance, meant that several first-generation decentralized 

computing projects did not achieve widespread usage despite the 

technology being available. 

LinqProtocol’s Approach: LinqProtocol is designed with these 

challenges in mind, particularly the bootstrapping problem. By taking 

a SaaS-demand-first approach (discussed further below), 

LinqProtocol plans to seed the marketplace with real computational 
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workloads from day one, effectively jump-starting demand so that 

providers have immediate incentives. This approach can help 

establish the positive feedback loop needed: initial jobs attract 

providers, a robust provider pool attracts more users with tasks, and 

so on until the network grows organically. Additionally, LinqProtocol 

emphasizes ease of use and reliability – abstracting away blockchain 

intricacies for end users and ensuring that providers meet certain 

performance standards – to foster trust in the marketplace. In the next 

sections, we delve into the technical architecture enabling this and the 

specific initial use-case (synthetic data generation) that LinqProtocol 

will leverage to galvanize the network. 

2. Technical Architecture of LinqProtocol 

 

Figure 2: Conceptual representation of LinqProtocol’s decentralized 

compute network. Many independent nodes are connected via a 

blockchain-based coordination layer, enabling peer-to-peer sharing 

of computational tasks. 
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​

The LinqProtocol architecture is composed of three primary layers: 

(1) an on-chain Smart Contract Layer that coordinates the 

marketplace logic (bidding, escrow, and registry), (2) an Off-Chain 

Compute Layer consisting of decentralized nodes running 

LinqProtocol client software to execute tasks, and (3) various User 

Interface and Access tools (dashboards, SDKs, CLI) that allow users 

to interact with the network. This section describes each component at 

a high level. 

 

Figure 3: High-level conceptual overview of LinqProtocol’s technical 

architecture. 

9 



 

2.1 Smart Contract Layer 

The smart contract layer is the backbone that facilitates trust and 

automation in the LinqProtocol marketplace, running on a secure 

Layer-2 blockchain for speed and low transaction costs. It includes 

several key smart contracts and functions: 

●​ Bid/Escrow Contract: This contract manages the economic 

exchange for computation. When a user (requester) submits a 

job request, a payment in the form of LinqProtocol’s token 

(LNQ) is deposited into an escrow within the contract. 

Providers can then bid or commit to execute the job for the 

posted reward. The escrow ensures that funds are locked 

on-chain when the task is accepted and are only released to the 

provider upon completion of the work after a number of days 

assuming neither party has submitted a dispute, thereby 

protecting both parties. If the job fails or times out, the 

contract can refund the escrow to the requester or penalize 

non-performing providers according to the protocol’s rules. 

●​ Provider Registration Contract: To participate, compute 

providers must register their nodes through a smart contract 

that maintains a directory of available resources. This 

registration process includes staking a certain amount of LNQ 

token (as collateral to discourage malicious behavior), and 

publishing metadata about the node’s capabilities (CPU cores, 

GPU, memory, geographic location, etc.). The contract issues 

a provider ID and records the provider’s stake and resource 

attributes on-chain. It also keeps track of provider reputation 

or performance statistics (e.g., number of completed jobs, 

success rate) which can be used in scheduling decisions. This 

on-chain registry enables requesters to discover suitable 

providers and provides a degree of trust (since poorly 
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performing providers can be identified or slashed via their 

stake). 

●​ Job Management Contracts: LinqProtocol uses smart 

contracts to orchestrate the lifecycle of computation jobs. A 

Job Request contract (or module) allows a requester to post 

a new task with required parameters (for example: required 

CPU/GPU time, memory, expected runtime, any special 

hardware needs) and an offered payment. The contracts 

broadcast and record this request such that it can be matched 

with providers. There is also logic for job history and audit – 

once a job is completed, its outcome (success/failure, time 

taken, provider identity) can be logged on-chain, building an 

immutable history. This history not only ensures transparency 

but can feed into provider reputation systems. The contract 

also includes dispute resolution mechanisms; for instance, if a 

requester claims the result was incorrect, there is an arbitration 

process before releasing funds. By handling job postings, 

assignments, and confirmations on-chain, LinqProtocol 

creates a trust-minimized workflow where each step is 

transparently recorded. 

●​ Example Request Flow: To illustrate, consider a user who 

needs a machine learning model trained. The user’s client (via 

the UI or SDK) calls the Job Request contract, posting a task 

description (e.g. “train model X for N iterations”) and a 

reference to a container containing all the necessary data along 

with an escrowed payment. Providers monitoring the contract 

see this request; one provider with sufficient GPU capacity 

accepts the job by calling the contract, which then formalizes 

the assignment (locking in that provider). The provider’s 

off-chain node downloads the container (as permitted by the 

job details), runs the training computation, and upon 

completion, submits a proof or output summary back on-chain 

to a job completion function. The proof mechanism must be 
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specified by the user within the job container, which may 

include logs, intermediate checkpoints, or server accessibility 

for validation. The contract verifies that the required result is 

provided and then releases the escrowed LNQ payment to the 

provider’s address after a number of days, assuming no 

dispute was submitted by either party. If the provider fails to 

deliver in time, the contract might cancel the assignment 

(freeing the requester’s escrow) and lower the provider’s 

on-chain reputation or slash a portion of their stake. This 

entire sequence is executed without a central coordinator, 

relying on the deterministic logic of smart contracts to ensure 

fairness. 

Overall, the smart contract layer acts as the marketplace coordinator 

– matching offers to needs and holding each party accountable. By 

deploying these contracts on a robust Layer-2 network, LinqProtocol 

ensures transactions (like posting a job or paying a provider) are fast 

and incur minimal fees, which is crucial for a high-volume 

marketplace. 

2.2 Off-Chain Decentralized Compute Nodes 

The actual computational work in LinqProtocol is performed by the 

off-chain network of provider nodes. These nodes are diverse 

computers run by individuals or organizations, contributing their 

processing power to the marketplace. The architecture of this layer 

emphasizes secure, efficient execution and coordination across 

potentially thousands of nodes: 

●​ LinqProtocol Client: Each provider runs the LinqProtocol 

client software on their machine, which connects them to the 

decentralized network. This client serves as the gateway 

between the blockchain and the node’s hardware. It listens 

for job assignments from the smart contract layer (e.g., events 
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indicating “job X assigned to provider Y”) and handles the 

off-chain retrieval of the task data and code. The client then 

executes the task on the local machine, monitors its progress, 

and finally returns results (if required) to the blockchain. 

Essentially, the client automates all aspects of participation for 

the provider – from bidding on tasks (according to the 

provider’s policy) to container setup and result submission – 

so that once configured, a provider’s machine can trustlessly 

work on tasks with minimal manual intervention. 

●​ Managerial APIs: To allow flexibility and integration, 

LinqProtocol offers managerial APIs and tools for both 

providers and requesters. For providers, the API (or a 

management console) can let them specify their node’s 

operational parameters: availability schedule, resource limits 

(e.g., only use 50% of CPU), pricing preferences (minimum 

bid acceptable), etc. This makes the marketplace more 

dynamic, as providers can tune their participation. For 

requesters (especially enterprise users or SaaS platforms 

integrating LinqProtocol), an API/SDK is provided to 

programmatically submit jobs, check statuses, and retrieve 

results. These managerial interfaces abstract the complexity of 

blockchain interactions into familiar REST or RPC calls, 

which is crucial for adoption in existing software workflows. 

●​ Load Balancing and Task Scheduling: In cases where a 

computational job is parallelizable or very large, 

LinqProtocol can distribute it across multiple nodes. The 

off-chain clients include logic for splitting workloads if the 

task definition allows (for example, rendering many frames of 

an animation or searching a parameter space can be 

partitioned). A built-in load balancing mechanism 

(coordinated by either a decentralized algorithm or via 

on-chain coordination) will assign different segments of a 

large job to different providers to achieve concurrency. The 

13 



 

network can thus act as a distributed cluster for 

embarrassingly parallel tasks. Additionally, if one provider 

node is capable but the user requests redundancy for 

reliability, the system could schedule the same task on two 

nodes and compare outputs (useful for verification of results). 

LinqProtocol’s architecture contemplates these scenarios to 

maximize throughput and reliability of computations. 

●​ Secure Networking Between Nodes: Providers may 

sometimes need to communicate with each other for 

multi-node tasks (for example, exchanging intermediate data 

in a distributed computing job). To facilitate this, LinqProtocol 

establishes secure peer-to-peer networking channels between 

nodes as needed. One approach is using a VPN-like overlay 

network where each provider’s client connects to a private, 

encrypted tunnel when collaborating on a job. This ensures 

that any data exchanged (which might be proprietary or 

sensitive) does not leak to the public internet and that only 

authorized nodes (those participating in the same job) can 

communicate. The use of end-to-end encryption (e.g., via 

elliptic-curve cryptography as referenced in similar systems​​

[11]) protects the integrity and confidentiality of data. 

Moreover, the networking layer handles NAT traversal and 

connectivity so that nodes across various networks (home 

broadband, corporate firewalls, etc.) can still form a mesh for 

data exchange. 

●​ Containerization: To maintain a consistent runtime 

environment across heterogeneous provider machines, 

LinqProtocol employs containerization (e.g., Containerd, 

which is used in Docker, or other Open Container 

Initiative-compatible runtimes). While Docker itself does not 

perform virtualization and instead shares the host OS kernel, 

LinqProtocol plans to utilizes Kata Containers or Confidential 

Containers for virtualization to ensure enhanced security and 
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workload isolation. When a job is dispatched to a provider, it 

comes packaged as a container image or with instructions to 

fetch a container image that contains the execution 

environment and code. The LinqProtocol client on the 

provider’s machine will launch the job inside a container 

sandbox. This has multiple benefits: it isolates the job from 

the host system (for security and stability), ensures that all 

dependencies and software versions are exactly as the 

requester intended (increasing reproducibility), and allows 

running untrusted code more safely. Providers do not have to 

manually set up each application’s environment; the system 

automates pulling the required container image (possibly from 

a decentralized storage if integrated, or from the requester 

directly). After execution, the container can be destroyed to 

clean up, leaving the host in its original state. Containerization 

thus standardizes execution on the distributed network. 

●​ Secure Execution Environments: For higher security needs, 

LinqProtocol can integrate secure execution technologies. 

This might include leveraging Trusted Execution 

Environments (TEE) like Intel SGX or AMD SEV, or 

isolated VMs, if tasks involve sensitive data that the requester 

encrypts. In such cases, the provider’s node would run the 

computation in a hardware-enforced enclave so that even the 

provider cannot inspect the code or data in plaintext – only the 

final result is revealed. While not all nodes will support TEEs, 

those that do can advertise this capability (via the registration 

contract) and attract jobs requiring confidential handling. 

LinqProtocol’s design leaves room for verifiability add-ons, 

such as using redundant computation or zero-knowledge proof 

techniques, to ensure that malicious providers cannot spoof 

results without detection. The combination of sandboxing, 

encryption, and optional verification provides a high level of 

trust in off-chain execution. 
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●​ System Requirements: To ensure a baseline quality, 

LinqProtocol defines minimum system requirements for 

participating provider nodes. These include hardware and 

software criteria (for example, a provider might need at least a 

64-bit Linux OS, x86_64 CPU with SSE4 support, a certain 

amount of RAM, etc.). Providers will also need a stable 

internet connection with adequate bandwidth to transfer job 

data. The LinqProtocol client performs self-tests during 

registration to verify the node meets these requirements (e.g., 

benchmarking CPU/GPU, testing network latency). Nodes 

that do not meet the minimum standards can be filtered out or 

have limited roles, which protects the network from unreliable 

participants. As the network grows, requirements might be 

tiered – allowing nearly any device for small tasks, but 

reserving big tasks for nodes that have proven capabilities or 

have staked more tokens (indicating commitment). Ensuring 

that providers are robust helps maintain the overall 

performance and reputation of the marketplace. 

 

Component Minimum 
Requirement 

High‑End 
Recommendation 

Operating 
System 

Linux (e.g., Ubuntu) Linux (e.g., Ubuntu) 

CPU Intel Core i5 / AMD 
Ryzen 5 

Intel Core i9 / AMD 
Ryzen 9 

RAM 8 GB 64 GB 

GPU Optional for non‑GPU 
tasks 

Nvidia RTX 4080 or 
better, 16 GB VRAM 

Storage 256 GB SSD 1 TB NVMe SSD 

Network 10 Mbps, < 400ms 
latency 

100 Mbps, < 400ms 
latency 
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Table 1: Example system requirements for providers participating in 

LinqProtocol. 

In essence, the off-chain layer transforms a loose collection of 

volunteer machines into a cohesive distributed cloud, by enforcing 

uniform execution via containers, enabling communication through 

secure tunnels, and coordinating their efforts via the on-chain 

commands. This design allows LinqProtocol to harness a wide variety 

of hardware spread across the globe and present it to users as a single, 

reliable computing platform. 

2.3 User Interfaces 

To make LinqProtocol accessible to end-users and developers, a set of 

user interface components is provided on top of the core protocol. 

These interfaces hide the complexity of blockchain interactions and 

distributed systems, offering a smooth user experience akin to 

traditional cloud services: 

●​ Request Dashboard: A web-based dashboard allows users to 

interact with LinqProtocol visually. Through this dashboard, a 

user can log in (via a web3 wallet for authentication), deposit 

tokens, and then submit compute jobs with a friendly 

form-based interface. They can specify parameters of their 

request (for example, uploading input files or selecting a task 

type from a predefined list), set the bounty/payment they are 

offering, and then monitor the status of their jobs in real time. 

The dashboard would display the progress of each request, 

show which provider is executing it (or if it’s in a bidding 

phase), and the time remaining or completed output. It may 

also show analytics such as cost estimates, past usage history, 

and performance metrics. Essentially, the dashboard acts as 

the “front-end” of the decentralized cloud for non-technical 

users or those who prefer a GUI (Graphical User Interface), 
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similar to how one would use AWS console to spin up an 

instance. 

●​ SDK (Software Development Kit): For developers who want 

to integrate LinqProtocol’s functionality into their own 

software or automated pipelines, an SDK is provided in 

multiple programming languages. The SDK wraps around the 

blockchain API and network calls, allowing developers to, for 

example, submit a job with a single function call in Python or 

JavaScript. They can programmatically check job results, 

handle callbacks when a job finishes, or even build custom 

workflows that involve LinqProtocol as a back-end compute 

engine. This is crucial for adoption in enterprise and research 

environments – for instance, a data science platform could use 

the SDK to offload heavy computations to LinqProtocol 

without the end-user even knowing that a decentralized 

network is doing the work behind the scenes. The SDK would 

manage the details like interacting with the user’s crypto 

wallet for payments, splitting tasks if needed, and retrieving 

results, so that developers interact with a high-level API rather 

than low-level smart contract calls. 

●​ Command Line Interface (CLI): For power users and for 

scripting purposes, LinqProtocol offers a CLI tool. This allows 

users to interact with the network through terminal commands 

– for example, one could run:  

linq submit --resource resource.yaml --duration 2h 

--image "docker.io/tensorflow/serving:latest" 

to submit a Docker container that requires a GPU for 2 hours. 

The CLI would handle packaging the task, uploading it, and 

initiating the on-chain request. Users could then use 

commands like  linq status <job_id>  to see progress or  

linq fetch <job_id>  to download results. The CLI is 

especially useful for integrating LinqProtocol into DevOps 
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workflows or for users who prefer automation and text-based 

interfaces (e.g., researchers who want to launch jobs from a 

remote server or integrate with batch scheduling systems). 

All these interfaces aim to make the decentralized nature of 

LinqProtocol nearly invisible to the end user. By providing familiar 

tools (web dashboards, APIs, CLIs), LinqProtocol lowers the barrier 

to entry. The user interface layer ensures that whether one is a casual 

user with a single job, a developer integrating compute services, or a 

provider setting up a node, they have a straightforward way to engage 

with the platform. This focus on usability is key to broad adoption 

and distinguishes LinqProtocol as not just a protocol for blockchain 

enthusiasts, but as a practical solution for the wider computational 

market. 

3. Opportunity in Synthetic Data Generation 

One of the initial target applications for LinqProtocol is synthetic 

data generation, a computationally intensive task well-suited to 

decentralized, parallel execution. Synthetic data generation refers to 

creating artificial datasets that mimic real data, often used to train 

machine learning models or test algorithms when real data is scarce or 

sensitive. Synthetic data is not “fake data” and an important 

distinction between these concepts is the existence of statistical 

significance. Fake data carries absolutely no statistical significance 

and is in effect completely useless whereas synthetic data contains 

statistical significance. This includes generating realistic images, text, 

sensor readings, or other forms of data through simulation or AI 

models (e.g., GANs or physics engines). Such tasks are extremely 

demanding in terms of compute power – for instance, training a 

state-of-the-art generative model can require thousands of GPU hours, 

and producing large volumes of synthetic data (say millions of images 

or records) can take significant time on a single machine​ [12]. Thus, 
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there is a strong incentive to parallelize these workloads across many 

processors. 

Decentralized computing is optimal for parallelizable tasks like 

synthetic data generation. Many synthetic data tasks can be broken 

down into independent units of work. For example, consider 

generating a synthetic image dataset: one could run N instances of a 

generative model in parallel, each producing a subset of images, and 

then combine the results. Similarly, in simulation-based synthetic data 

(such as creating virtual sensor logs or simulating user behavior), one 

can run multiple simulations concurrently with different random seeds 

or parameters. LinqProtocol’s network, with its distributed nodes, can 

naturally accommodate this by assigning different portions of the task 

to different providers simultaneously. A job that might take 10 hours 

on one high-end GPU could potentially be completed in 1 hour by 

using 10 GPUs distributed through the network, assuming the task 

scales linearly. This embarrassingly parallel nature means the 

time-to-completion for large-scale synthetic data projects can be 

dramatically reduced using LinqProtocol. 

Another reason synthetic data generation is a fitting opportunity is the 

increasing demand and value of such data across industries. 

According to market research, the global synthetic data generation 

market was valued at about $218 million in 2023 and is projected to 

grow at an annual rate of over 35%, reaching a multi-billion dollar 

scale by 2030​ [13]. This surge is driven by the needs of AI model 

training (especially as privacy regulations restrict the use of real 

personal data) and by industries like autonomous vehicles, healthcare, 

and finance that require vast amounts of scenario data. For example, 

autonomous vehicle companies generate countless hours of simulated 

driving data to train their systems for rare events; similarly, banks 

might generate synthetic transaction logs to improve fraud detection 

algorithms without risking customer data privacy. These use cases 

often require generating massive datasets in a short time frame, 
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which translates to a huge, but intermittent, compute demand. 

Purchasing and maintaining enough in-house hardware to handle 

these peak loads is inefficient, and renting equivalent capacity from a 

centralized cloud can be cost-prohibitive due to high GPU instance 

prices. LinqProtocol can offer a more cost-effective alternative by 

tapping into idle GPUs across the world to meet this demand 

on-the-fly. 

Moreover, LinqProtocol’s SaaS-demand-first strategy means it can 

offer a ready-to-use synthetic data generation service on top of the 

raw compute marketplace. Rather than initially expecting users to 

bring their own complex compute jobs, LinqProtocol will provide a 

higher-level service where users simply request the type of synthetic 

data they need (e.g., “generate 100,000 labeled images of street 

scenes” or “simulate 1 year of network traffic logs”). Behind the 

scenes, that SaaS service converts the request into distributed 

compute tasks on the LinqProtocol network. This strategy ensures 

there is built-in demand for computation from day one, solving the 

chicken-and-egg problem by effectively acting as an initial major 

user of the platform. It demonstrates the platform’s capability and 

provides immediate value to clients who might just want data, not 

necessarily to manage computing jobs themselves. 

In terms of implementation, synthetic data generation jobs on 

LinqProtocol will leverage its technical strengths: containerized 

environments can include popular generative model frameworks 

(TensorFlow/PyTorch with pre-trained models that can be fine-tuned 

or sampled), and secure execution can be used if proprietary models 

or sensitive base data are involved. The ability to load-balance means 

if a request is for a very large dataset, the task can be split among 

dozens of providers – each generating a chunk of data – and the final 

dataset is aggregated and delivered to the user. Because synthetic data 

tasks usually don’t require intensive inter-node communication (each 

generator mostly works on its own portion), they are not bottlenecked 
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by network bandwidth in the way some tightly-coupled HPC tasks 

are. This makes them ideal to run on a geographically distributed 

network with varying node capacities. 

To illustrate, imagine a synthetic data mining scenario. We will 

assume for the sake of argument that LinqAI has access to a GAN 

(Generative Adversarial Network) which is capable of generating 

statistically accurate MRI images. A medical research group needs a 

simulated dataset of MRI images for a rare condition, to augment 

their real data for a deep learning model. They use LinqProtocol’s 

synthetic data SaaS, which internally has a GAN model capable of 

producing MRI-like images. The request for, say, 10,000 images is 

broadcast as jobs to 50 provider nodes (200 images each). Each node, 

running the GAN in a container, generates its share of images and 

sends them back (perhaps uploading to a distributed storage 

accessible to the requester). Within hours, the researcher has the full 

dataset, which would have taken days on a single machine. The 

researcher pays in LNQ tokens for the aggregated compute used, and 

those tokens are distributed to the 50 providers according to their 

contributions. 

By focusing on synthetic data generation as a flagship use-case, 

LinqProtocol not only addresses a pressing need in the AI/data 

science community but also showcases the advantages of 

decentralized computing in a tangible way. It provides a virtuous 

cycle: the synthetic data service creates baseline demand for the 

network, which attracts providers; those providers enable fast, cheap 

data generation, which in turn attracts more users from the data 

science community to use the service or even bring new types of 

tasks. In the long run, success in this domain can be replicated in 

other domains that share similar characteristics (highly parallel, 

compute-heavy, intermittent demand), such as Monte Carlo 

simulations in finance, protein folding computations in biotech, or 
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rendering in entertainment. Synthetic data is thus an optimal 

beachhead market for LinqProtocol to prove its value. 

4. LNQ Token Economy 

LinqProtocol’s token, LNQ, is integral to the economic design and 

governance of the platform. The token is not merely a currency for 

transactions but is woven into the trust and incentive mechanisms that 

keep the marketplace balanced and secure. Key aspects of the LNQ 

token economy include: 

●​ Utility in Payments: LNQ serves as the unit of value 

exchange between requesters and providers. When a requester 

wants to utilize compute resources, they pay in LNQ tokens 

which are placed into the smart contract escrow for the job. 

Providers earn LNQ tokens as compensation for completing 

tasks. Using a token allows for microtransactions and global 

participation without relying on banking rails, and it enables 

programmatic escrow and conditional payment through smart 

contracts. The pricing of tasks (how many tokens for a certain 

amount of compute) will be determined by the free market 

dynamics on the platform – likely starting from benchmarks 

and then fluctuating with supply and demand. To reduce 

volatility risk, especially for enterprise users, LinqProtocol 

might integrate stablecoin channels or dynamic pricing 

oracles, but LNQ remains the primary medium that fuels the 

marketplace. 

●​ Escrow and Staking Mechanics: As described in the 

architecture, LNQ is used in escrow for each job to ensure fair 

payment. Beyond that, LNQ tokens are also used for provider 

staking. Providers may be required to lock up a certain 

amount of LNQ as a security deposit when they register. This 

stake can be slashed (forfeited) if the provider behaves 

maliciously or fails to honor tasks consistently. For example, 
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if a provider frequently aborts tasks or returns incorrect results 

(as determined by verification or dispute resolution), a portion 

of their staked tokens might be deducted as a penalty. This 

economic disincentive encourages honest participation. On the 

flip side, staking can be tied to reputation – providers who 

stake more LNQ could be given preference for high-value 

tasks or larger jobs, under the assumption that a higher stake 

signals higher commitment and trustworthiness. The escrow 

and staking together create a two-way safety net: requesters 

are assured that their payment is locked until job completion, 

and providers are signaling their reliability through staked 

tokens. 

●​ Token Incentives and Inflation: To jumpstart the network, 

LinqProtocol may implement token incentive programs. For 

instance, a certain amount of LNQ might be set aside as block 

rewards or task completion rewards to early providers, 

supplementing the payments from requesters. This is 

analogous to mining rewards in blockchain networks – here 

providers “mine” by contributing compute. Such inflationary 

rewards can compensate providers when user demand is still 

growing, and can be tapered off as the marketplace becomes 

self-sustaining with fee revenue. The token’s supply model 

(fixed cap, inflationary, or deflationary via burns) is carefully 

designed to ensure long-term viability. 

●​ Governance Role: LNQ tokens will also confer governance 

rights in the LinqProtocol ecosystem. As the platform 

matures, decisions about system upgrades, parameter tuning 

(like fee rates, staking requirements, new features), or treasury 

allocation can be made through a decentralized governance 

process.  

●​ Governance and Dispute Resolution: A dedicated role exists 

for community members who would like to participate in 

dispute resolution. By way of staking LNQ members will be 
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able to be selected randomly to vote on the result of a dispute. 

These members will have access to all the necessary 

information regarding the transaction and will be able to 

verify independently whether the provider or requestor should 

be held accountable for the dispute.  

●​ Monetization and Sustainability: The token economy is 

structured such that as usage grows, the value of LNQ and its 

demand within the ecosystem grow as well. More computation 

being traded means more LNQ flowing through escrows and 

possibly more locked in staking (reducing circulating supply). 

The long-term sustainability comes from a virtuous cycle: a 

useful platform attracts users, which drives token utility; a 

valuable token incentivizes more providers and token holders 

to invest in the network; and a broad token distribution 

through mining/staking ensures decentralized ownership.  

The LNQ token is the lifeblood of LinqProtocol’s decentralized 

marketplace, enabling decentralized trust (through escrow and 

staking) and decentralized governance. Its economy is crafted to 

reward early participants, discourage bad actors, and evolve the 

platform through community consensus. By aligning incentives of all 

parties – requesters get cheap reliable compute, providers earn tokens 

for their resources, and token holders benefit from the ecosystem 

growth – LNQ plays a pivotal role in nurturing a self-sufficient 

compute economy. 

5. Roadmap 

LinqProtocol’s development and deployment will progress in phased 

stages, focusing first on core functionality and a compelling use-case, 

then expanding and decentralizing over time. Below is a high-level 

roadmap outlining these phases. 
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Phase 1: Foundation and Testnet Launch – The initial phase 

centers on building the fundamental infrastructure of LinqProtocol 

and validating it in a controlled environment. This involves smart 

contract development (for escrow, registry, job handling) and 

deploying them on a testnet of the chosen Layer-2 blockchain. 

Concurrently, the first version of the provider client and basic user 

interfaces will be developed. During this phase, the goal is to achieve 

an end-to-end working prototype: a simple job can be posted via the 

dashboard or CLI, a test provider client picks it up, executes a dummy 

computation, and the result and payment flow through the test 

contracts. Extensive testing will be done to ensure security (e.g., 

trying to break the escrow logic, testing failure recovery). Phase 1 

will involve a closed group of alpha testers – perhaps partner 

institutions or community developers – who run provider nodes on 

testnet and help shake out bugs. Key deliverables include a publicly 

released whitepaper, open-source code repositories, and 

documentation for how to run a node or submit a job on testnet. By 

the end of Phase 1, LinqProtocol will have a stable testnet with a 

small network of nodes and a basic provider node services running on 

top to showcase the concept. 

Phase 2: Mainnet Beta with Synthetic Data Service – In Phase 2, 

LinqProtocol will launch on its target mainnet (initially likely an 

Ethereum Layer-2 or similar high-throughput chain) in a beta mode. 

The focus here is on the SaaS-demand-first rollout. The synthetic 

data generation service will be rolled out to early users (for example, 

select AI startups, research labs, or through a hackathon) to generate 

real workloads on the network. To ensure those jobs are fulfilled, a 

cohort of early provider partners will be onboarded – these might 

include data center operators with spare capacity or crypto miners 

repurposing GPUs to provide compute. Incentive programs using 

LNQ token rewards will likely be active in this phase to subsidize 

usage: e.g., users might get a certain amount of free compute credit in 
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LNQ for trying the service, and providers might earn bonus tokens for 

maintaining uptime. During this beta, the team will monitor 

marketplace dynamics closely – adjusting parameters like default 

pricing, timeouts, or job replication factor to ensure reliability. The 

user interfaces (dashboard, SDK, CLI) will be refined based on 

feedback, making them more robust and user-friendly. This phase will 

also likely include security audits of the smart contracts and perhaps a 

third-party review of the platform’s architecture. By the end of Phase 

2, the aim is to have a functional marketplace with actual paying users 

and a growing base of providers, essentially proving the concept in a 

real-world setting, though possibly with caps on usage or other 

safeguards since it’s a beta. 

Phase 3: Expansion of Use Cases and Decentralization – With the 

synthetic data generation use-case driving initial traction, Phase 3 will 

broaden LinqProtocol’s scope. Technically, this is when the platform 

opens up more generally – allowing users to submit arbitrary 

containerised jobs, not just those related to the initial SaaS. Outreach 

will be done to communities like scientific computing, financial 

modeling, CGI rendering, and more, to onboard new demand streams. 

On the supply side, LinqProtocol will work on further 

decentralization: encouraging anyone to run a provider node in a 

permissionless manner. This might involve releasing easy installation 

scripts, supporting more operating systems, and perhaps lightweight 

clients for less powerful devices. The network could also integrate 

decentralized storage solutions at this stage (for handling 

input/output files of jobs via IPFS, Arweave or others), making it 

more resilient and censorship-resistant. The token economy might 

also evolve: if inflationary rewards are used, a plan to taper them and 

rely more on transaction fees would be executed to move towards 

sustainability. By the end of Phase 3, LinqProtocol should be a 

versatile, open marketplace supporting a variety of computational 

workloads, and its operation and evolution would be increasingly 
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governed by the community of token holders and users rather than the 

core team alone. 

Phase 4: Maturity and Ecosystem Integration – In the long-term 

phase, LinqProtocol aims to become a critical piece of the broader 

decentralized infrastructure ecosystem. This phase involves deep 

integration and partnerships: for example, integrating with major 

blockchain platforms as an off-chain compute oracle (allowing smart 

contracts on other platforms to outsource heavy computations to 

LinqProtocol), or partnering with IoT projects to utilize edge device 

compute, etc. Technical enhancements likely in this phase include 

implementing advanced verification (like zero-knowledge proofs of 

computation for certain tasks), optimizing network performance. At 

this stage there will be good motivation for the creation of a custom 

blockchain (for instance LinqChain), purpose built to ensure optimal 

performance of LinqProtocol incentivising further developer 

expansion while still allowing the LNQ token economy to benefit 

from the open-source nature of the project by creating the premiere 

chain for any decentralized computing protocol to run upon. The 

marketplace would also refine its matching algorithms using 

accumulated data – perhaps employing AI to predict pricing and 

match jobs to optimal nodes for efficiency. In terms of outreach, 

LinqProtocol would position itself alongside centralized cloud 

providers as part of a hybrid cloud strategy for businesses: some 

workloads on AWS/Azure, and overflow or specialized workloads on 

LinqProtocol for cost and speed benefits. By the end of Phase 4, the 

vision is that LinqProtocol is a fully self-sustaining network, with a 

broad and balanced user base, recognized not just in the crypto 

community but in the broader tech industry as a viable alternative 

infrastructure. The token would be widely distributed, and the 

project’s success metrics would be measured in real-world impact – 

e.g., how many computations served, how much value transferred to 
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resource providers, and how many important problems (like AI model 

trainings or scientific discoveries) were powered by the network. 

Throughout these phases, LinqProtocol will maintain an academic 

and community collaboration approach – engaging with 

researchers (for instance, to validate security or to publish results on 

the efficacy of decentralized computing) and standardization bodies. 

Each phase transition will be accompanied by evaluation periods 

where data from the previous phase is analyzed and published, 

helping guide the next phase’s objectives. This phased roadmap 

ensures that LinqProtocol grows carefully, proving its assumptions at 

each step, and steadily moving from a controlled launch to an open, 

widely-used platform that realizes the promise of decentralized 

computing. The end goal is a future where anyone in the world can 

access vast computational power on-demand through LinqProtocol, 

and anyone with a compute resource can contribute and earn – all 

mediated by the elegant interplay of blockchain and distributed 

systems. 
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